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ABSTRACT

Many blind source separation algorithms take advantage
of repeating musical structures to better separate the voice
from accompanying instrumental music. Hip-hop music is
especially repetitive, often using identical loops under non-
repeating rap lyrics. In this paper, we present a method for
separating instrumental music and vocals in hip-hop us-
ing a two-step process. First similar sound segments are
found using the track’s magnitude spectrogram, and then
an estimate of the repeated sounds within these segments
is calculated. Our approach is based on the repeating pat-
tern extraction technique (REPET) with modifications that
improve its performance for hip-hop music. The most ef-
fective modification is finding the optimal alignment with-
out constraining by tempo. However, this results in in-
creased computation time compared to the original REPET
technique. To evaluate performance, a new dataset of 50
popular hip-hop tracks and their instrumentals was assem-
bled. Our proposed method was also tested on an existing
dataset of 100 tracks containing a wider variety of music
that has been used before for evaluation of existing meth-
ods. These experiments show that the proposed method
can effectively separate full hip-hop tracks better than ex-
isting approaches, but this improvement is limited to hip-
hop and other music with strong repeating structure.

1. INTRODUCTION

Hip-hop instrumentals have many uses, and this creates a
demand for them. Instrumentals are reused by different
rappers to release “mix-tapes”, collections of songs less
polished and less original than would be released on a
proper album, they are used in battle rap competitions and
by freestylers (rappers who improvise lyrics over a beat),
they are used by remixers to blend two existing rap songs
by putting the rap verse of one over the instrumental beat of
another, and they are used by amateurs to perform karaoke.
The demand for these instrumentals and the sampling cul-
ture of hip-hop means that many instrumentals are given
an official release, thus being useful as a ground truth that
is easier to come by for the evaluation of automated sound
source separation. A new dataset of 50 songs, from vary-
ing artists and time periods, was created to evaluate the
separation of hip-hop music, and guide the design and de-
velopment of our algorithm.

The repetitive nature of hip-hop instrumentals (often
composed of identical loops) also lends itself to sound

source separation techniques that leverage repetition. The
original REPET algorithm models music as a repeating
background and non-repeating foreground, using repeat-
ing features of the sound to separate it. REPET segments
the magnitude spectrogram into equally sized pieces, and
then derives a “repeating mask” a soft-mask which esti-
mates the repeating sounds in each segment and is used
to filter every segment in the input sound. This method
works well for short segments of music where the musical
structure remains static, however it struggles to effectively
separate full songs as it does not adapt over time to changes
in the music. Several adaptations of the ideas in the orig-
inal REPET algorithm have been produced to handle this
common “verse-chorus” problem. Both repet ada (Liutkus
et al.) [10], and repet seg (Rafii et al.) [13] look for repeat-
ing patterns locally, however, they do not take advantage
of similar sounds which may appear far away from each
other (e.g. instrumentals in the 1st verse and 3rd verse),
nor does it exclude dissimilar sounds which appear close
to each other (e.g. a verse right next to a chorus).

Adaptive REPET (repet ada) [10] keeps track of a
beat spectrogram, representing how the repeating period
changes over the course of a song. It uses this beat spec-
trogram to find the repeating period p for each time slice,
and then calculates the element-wise median of the two
time slices ±p away from it for use in the repeating mask.
Segmented REPET (repet seg) [13] performs the original
REPET algorithm on overlapping windows of a set size
(with 10s shown to be optimal in [13]), overcoming origi-
nal REPET’s difficulty scaling to long songs by dividing it
into smaller sounds. Both of these approaches are highly
local, in repet ada the repeating mask is determined by
sounds p away, and in repet seg the window size limits
where repeating sounds can be found.

Like those adaptations, this paper presents a method
that uses a dynamic repeating mask, which is able to
change over the course of the song. The repeating mask is
calculated by selecting a set number of segments of sound
from anywhere in the track which are expected to con-
tain the same or similar backgrounds. Additionally, while
REPET and its variants use an element-wise median on the
segments of the magnitude spectrogram, this paper sug-
gests better results can be obtained by taking the minimum,
or by using a frequency-specific neural-network function.



2. RELATED WORK

Audio source separation has been a topic of active research
for several years. The Signal Separation Evaluation Com-
paign (SiSEC) has been instrumental in providing data sets
and tasks for evaluating different algorithms [1, 20]. A
large variety of algorithms have been proposed for this
task [5, 6]. A somewhat recent overview can be found
in Vincent [19]. In the most general setting no assump-
tions are made about the different sound sources in the
mixture. A large number of work in audio source sepa-
ration focuses on speech signal [8, 22] but more recently
music signals have also been analyzed. Music provides a
particularly interesting case as some sound sources can be
considered more important than others (for example vo-
cals) and assumptions about structure [2] and repetition
can be used to improve the separation performance. The
term informed sound source separation has been used to
describe such algorithms [9]. Deep recurrent neural net-
works have been explored for signing voice separation [7].
Other approaches are based on non-negative matrix factor-
ization [12] or utilize pitch and rhythmic information [14].
Our proposed approach belongs to a family of methods
that leverage the strong repetition in musical signals that
originate from the REPET (REpeating Pattern Extraction
Technique) method [10, 13, 15, 16]. There are several ap-
proaches that have been proposed to evaluate the perfor-
mance of blind and informed sound source separation algo-
rithms [4, 18] originating from the audio source separation
evaluation campaigns [20, 21].

3. METHOD

Early stages of the algorithm match the REPET algorithm
described in [15]. A spectrogram of the input signal, X ,
is calculated using a Short-Time Fourier Transform with a
Hamming window and constant overlap. The magnitude
spectrogram, V , is derived from X without the mirrored
frequencies. The repeating period, p, is determined from
autocorrelating each frequency bin of V 2, and taking the
mean of the results.

3.1 Similar Segment Identification

A visual outline of the salient part of this algorithm can
been seen in Figure 1. Like in the original REPET the
magnitude spectrogram V is divided into segments of size
p (step A in Figure 1), however we then compare each of
these segments to every alignment possible over entirety of
V (step B Figure 1). This allows us to find multiple similar
sounding segments from anywhere in the track, while stan-
dard REPET uses its neighbouring segments (those which
are offset by a multiple of p). Within local ranges the most
similar segments of sound are often found offset by p, but
can become misaligned over longer durations. We find bet-
ter segments when not constraining the segments to a mul-
tiple of the repeating period: we search for the optimal
alignment, using p only to determine the size of the seg-
ments. This provides for better results, but does come at a
high computational cost, making this method slower than

Figure 1. Outline of the xcorr min REPET algorithm

existing REPET methods. Given a p-length segment S, we
identify 3 similar sounding segments by the process shown
in Algorithm 1, which is essentially choosing the maxi-
mum 3 segments of a modified cross correlation between
S and V .

Data: Magnitude Spectrogram V , Segment Magnitude
Spectrogram S

Result: 3 similar sounding segments for each segment
|s| = length(S);
|v| = length(V );
for i in (|v| − |s|) do

similarity[i] = dot(S,min(S,V[i:i+p]));
//dot(A,B) is the inner product of A and B

end
for 3 iterations do

j = argmax(similarity);
add V[j:j+p] to similar segments of segment S;
remove indexes in the range j ± /2 from similarity;

end

Algorithm 1: Identification of 3 similar segments

3.2 Segment Operation

Once we have three similar sounding segments to our orig-
inal segment, we compute a repeating mask, a soft mask
used to filter the input signal. This repeating mask is en-
tirely dynamic and will change for every segment, because
each segment will have identified different segments which
sound similar to it. The challenge then becomes deter-
mining the common sounds between the original segment
and the three found elsewhere in V which sound similar.
Many REPET-like algorithms take an element-wise me-
dian for every segment to calculate the repeating mask,
although the mean has also been explored. We test two dif-
ferent operations on these segments, an element-wise min-
imum(shown in step C of Figure 1), and a learned neural
network.

If you add a sound to x(t), you would expect the



magnitude spectrogram of the mixture to be greater than
that of the original. This is because of the linear prop-
erty of the Fourier transform, F{x(t)} = X(ω) and
F{yn(t)} = Yn(ω): F{x(t) + yn(t)} = X(ω) + Yn(ω),
so |X(ω) + Y (ω)| > |X(ω)|

If you have multiple copies of x(t), with different sounds
yn(t) attached, knowing that the original is less than each
of the mixtures, you could take the minimum to recover the
original sound.

x(t) ≈ F−1{min(|X(ω) + Y1(ω)|,
|X(ω) + Y2(ω)|,
|X(ω) + Y3(ω)|,
|X(ω) + Y4(ω)|)}

(1)

Although taking an element-wise minimum showed
promising results, the frequency of the sounds we wish to
remove (the rapped vocal sounds) lie within a predictable
frequency range, and so using a operation accounts for
this could be expected to bring better results, unlike the
element-wise minimum which does not discriminate its
output based on frequency bin. By training a neural net-
work to operate on a given frequency bin, it might account
for this and would also contain the potential to be more
stable – if, for example, one of the selected segments con-
tained a different underlying instrumental sound, a neural
network might be able to account for it if the other two ad-
ditional segments are acceptable, whereas an element-wise
minimum will be highly sensitive to changes. While many
papers have used deep neural networks (DNNs) on magni-
tude spectrograms to separate sound [7,8,11,17,22], many
of these papers are trained to output hard masks, trans-
forming the problem into a binary classification problem.
Additionally, the data that is run through them is not pro-
cessed to identify similar sounds before their use. In this
paper, we explore training 1025 separate neural networks,
one per frequency bin, to transform four sound segments
to one soft mask. The networks were two layered feed-
forward with 10 hidden neurons, the first layer using a sig-
moid activation function and the second a linear function,
and trained using Levenberg-Marquardt backpropagation.

Each neural network takes as input four values, one
from each of the segments and outputs one value for use
as a soft mask. The target values used in training are taken
from the magnitude spectrogram of the actual instrumen-
tal, as this would be ideal output. The input values used in
training come from similar segment processing described
in Algorithm 1 done as pre-processing. Training was done
on 10 randomly selected tracks from the dataset, and then
70% of the 4 value→1 value sets were used in training,
15% for test, and 15% for validation. 1025 different net-
works were trained, one for each frequency bin. For ex-
ample, the neural network used for frequency bin 1 would
be trained on data from the first frequency bin in the simi-
lar sounds, and the first frequency bin of the instrumental’s
magnitude spectrogram. When used to estimate the repeat-
ing mask, the four values from each segment identified by
Algorithm 1 would be passed to the neural network for that

frequency, and then the resulting value used as the repeat-
ing mask. The operation is element-wise and frequency
dependent.

4. DATASETS

4.1 Hip-hop

A new dataset of 50 hip-hop tracks spread out over four
decades of hip hop was compiled for evaluating and train-
ing. Full tracks were used wherever possible, occasionally
clipping out “skit” intros. All tracks and their instrumen-
tals had a sampling frequency of 44,100Hz, and were com-
prised of two stereo channels. As most released instrumen-
tals were not properly aligned with their full tracks, this
was done by hand in creating the dataset.

4.2 SiSEC MSD100 Dataset

The Signal Separation Evaluation Campaign has released
the Mixing Secret Dataset, a collection of 100 songs split
across genres for setting a benchmark for sound source
separation. Following success on a strictly hip-hop dataset,
the version of REPET was run on this general music
dataset to gauge its performance on music in general. This
dataset is also sampled at 44,100Hz, and has source files
for drum, bass, vocals, and other. We considered the in-
strumental to be the combination of bass, drums, and other,
and tested our output against that.

5. EVALUATION

Results were evaluated using Blind Source Separation
Evaluation (BSS Eval) described in in [21]. This pro-
vides four objective measures of sound separation qual-
ity between a source and its estimate, a source to distor-
tion ratio (SDR), source image to spatial distortion (ISR),
source to interferences ratio (SIR), and source to artifact ra-
tio (SAR). Definitions can be found in equations 2,3,4,and
5, further details can be found in [21]. A better separation
will yield higher values. Figure 2 shows comparative re-
sults between REPET algorithms on the hip-hop dataset,
Figure 3 shows the result on the MSD100 dataset. Table
1 shows how often each algorithm presents the best results
for each of the BSS categories in the hip-hop dataset.

Table 1. Number of songs each algorithm gives the best
result for each BSS measure on the hip-hop dataset.

xcorr min repet ada repet seg
SDR 29 1 20
ISR 32 6 12
SIR 19 14 17
SAR 33 1 16

SDR := 10log10
|starget|2

|einterf + enoise + eartif |2
(2)



SIR := 10log10
|starget|2

|einterf |2
(3)

ISR := 10log10
|starget|2

|enoise|2
(4)

SAR := 10log10
|starget + einterf + enoise|2

|eartif |2
(5)

Figure 2. SDR performance of different methods on hip-
hop dataset.

Figure 3. SDR performance of different methods on
MSD100 dataset.

Table 2. Mean and standard deviation performance for
each algorithm on the hip-hop dataset

SDR ISR SIR SAR
xcorr min 7.1 ± 3.8 13.8 ± 5.8 23.5 ± 5.0 8.7 ± 4.3
xcorr neu 7.1 ± 3.3 12.9 ± 5.0 23.8 ± 4.3 8.8 ± 4.0
repet ada 5.6 ± 2.9 13.1 ± 5.2 26.2 ± 5.1 6.2 ± 3.5
repet seg 6.8 ± 3.0 13.3 ± 5.3 26.5 ± 5.1 7.7 ± 3.6

Table 3. Mean and standard deviation performance for
each algorithm on the MSD100 dataset

SDR ISR SIR SAR
xcorr min 1.9 ± 3.1 9.5 ± 3.8 30.2 ± 35.2 5.2 ± 2.5
repet ada 5.2 ± 2.6 14.6 ± 3.4 36.5 ± 32.7 7.0 ± 2.2
repet seg 5.3 ± 2.9 14.1 ± 4.0 36.4 ± 32.7 7.3 ± 2.4

Results within the hip-hop dataset show that both the
neural and xcorr min versions of repet presented in this
paper outperform repet ada and repet seg at the mean and
different percentiles. However, we find that the subjective
quality of the instrumentals extracted by xcorr min greatly
exceed the results in any of the other methods, which is
not adequately captured in the bss eval numbers. Output
from the neural method is often accompanied with noisy
artifacts.

Figure 4. SDR performance of different methods hip-hop
dataset

We also tested the xcorr front-end with an element-wise
median to isolate the effect that segment selection would
have. This produced better results than either repet ada or
repet sim, but did not perform as well as xcorr min. Those
results can be see in Figure 4.

6. DISCUSSION AND FUTURE WORK

In the process of experimenting with hip-hop tracks we dis-
covered two limitations of the proposed method: 1) muted
end loops, 2) stereo signals. A common technique in hip-
hop production is to mute the instrumental at the end of
a line to place emphasis on the lyrics. In the data set,
this can be seen in “All Caps” (allcaps.wav), and “Ain’t
No Half Steppin’” (half.wav), among others. However, if
one of these segments is chosen for use with a segment
where the end of the loop is not muted, this will over re-
strict the repeating mask, and only allow the frequencies
that are present in the vocal. For example, consider a loop
that repeats four times, and on the fourth, the end is muted.
The algorithm put forward in this paper will use a repeating
mask that eliminates instrumental frequencies at the end of



the loop, when the right choice would be to keep those
frequencies in the mask, as when considering the output
for the fourth loop only the frequencies present in the seg-
ment will be output and not those in the mask (Stage 3 of
REPET).

REPET treats the two channels independent of one an-
other, but this neglects additional and potentially valuable
information present in the other channel. Any sounds that
change channels will be thrown out by the repeating mask.
It should also be noted that stereo features could be used
to improve the separation, as vocals are usually panned in
the center, whereas instrumental sounds are often panned
more to the right or left channels. In some cases, subtract-
ing the one channel from another in the time-domain can
result in surprisingly good separation.

In the future we plan to add automatic detection of
muted-end loops and incorporate stereo panning informa-
tion in the creation of the mask to improve vocal separa-
tion without making the strong assumption that vocals are
always centered. When listening to the separation results it
is easy to identify which algorithm is used. Also frequently
the perceptual quality of the separated vocals and instru-
mentals not perfectly correlated with the SDR (or other
objective metric) value. This is something that is known
in the audio source separation community and has led to
the development of the Perceptual Audio Source Separa-
tion toolkit [3] which we plan to use.

From our experiments it is clear that the proposed
method performs better in Hip Hop music but not as well
in the more general MSD100 data set. We plan to investi-
gate the automatic detection of which variant of the algo-
rithm is more appropriate as a way to improve the results.
To support reproducibility the code and associated data set
described in this paper are available by request from the
authors.
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